Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
ImmunoChem/Acetyl Lysine Antibody/100 µg/ICP0380188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线
产品资料

ImmunoChem/Acetyl Lysine Antibody/100 µg/ICP0380

Acetyl Lysine Antibody

Catalog # Pack Size Price(USD)
ICP0380 100 µg $350.00

Quantity:

Product Description
This pan-specific antibody is affinity purified using acetyl-lysine affinity chromatography. It recognizes proteins with acetylated lysine residues. The product can be utilized for proteomic studies of acetylated proteins and immunoaffinity chromatographic isolation of acetylated proteins/peptides from protease-digested proteins of whole cells.
A B
Western blot analysis of the acetylated protein profile in HeLa cell lysate with anti-acetyl lysine antibodies (ICP0380, lane A) and with additional acetylated BSA(10 ug/mL) in the primary antibody (lane B)
Cell Reports. 2019. 29(3). doi: 10.1016/j.celrep.2019.09.023
.
Species
Rabbit
Formulation
250 μg/mL antibody in PBS, 50% glycerol
Immunogen
Acetylated KLH conjugates
Purification
Affinity chromatography with acetyl-lysine agarose.
Specificity
The antibody recognizes proteins acetylated on lysine residues. Tested: acetylated histone, acetylated BSA, and acetylated MBP.
No cross-reaction to non-acetylated proteins.
Applications
ELISA; WB (1:1000); IP; Immunofluorescence; Immunochemistry
Scientific Description
DNA transcription cannot take place unless DNA is unwound from the nucleosomes. The cell unwinds the DNA by acetylating lysine residues within the proteins. It has been suggested that acetylation of non-histone proteins (e.g., transcription factors) and histones may be involved. Acetylation of these proteins may result in signal transduction within the chromatic domains.
Storage & Stability
Product is stable for several weeks at 4°C. For extended storage, store product at –20ºC. Expiration date is one year from date of shipping if properly stored.
Product Specific References
  1. 1.Mol. Cell. Proteomics.2009.8(2): 215-225. doi:10.1074/mcp.M800187-MCP200.
  2. 2.Eur. J. Cell Biol.2011.90(2-3): 128-135. doi:10.1016/j.ejcb.2010.09.004.
  3. 3.Nucleic Acids Res. 2011.39(14): 5907-5925. doi:10.1093/nar/gkr162.
  4. 4.J. Lipid Res.2012.53(9): 1864 -1876. doi:10.1194/jlr.M026567.
  5. 5.J. Biol. Chem.2012.287(39): 32307-32311. doi:10.1074/jbc.C112.403048.
  6. 6.Mol. Cell. Proteomics.2012.11(5): 202-214. doi:10.1074/mcp.M112.017707.
  7. 7.Mol. Cell. Biol.2012.32(14): 2823-2836. doi:10.1128/MCB.00496-12.
  8. 8.PLoS Genet.2012.8(9): e1002948. doi:10.1371/journal.pgen.1002948.
  9. 9.Genes Dev.2012.26(13): 1473-1485. doi:10.1101/gad.193615.112.
  10. 10.Nature.2012.482(7384): 251-255. doi:10.1038/nature10804.
  11. 11.Nature Med.2012.18(1): 159-165. doi:10.1038/nm.2559.
  12. 12.Mol. Syst. Biol.2012.8(1): 571. doi:10.1038/msb.2012.4.
  13. 13.J. Biol. Chem.2012.287(29): 24460-24472. doi:10.1074/jbc.M112.382226.
  14. 14.J. Proteomics.2013.79: 60-71. doi:10.1016/j.jprot.2012.12.001.
  15. 15.J. Proteome Res.2013.12(9): 3952-3968. doi:10.1021/pr400245k.
  16. 16.Mol. Cell. Biol,2013.33(6): 1114-1123. doi:10.1128/MCB.01044-12.
  17. 17.Mol. Cell. Biol.2013.33(19): 3864-3878. doi:10.1128/MCB.01495-12.
  18. 18.Mol. Microbiol. 2013.89(4): 660-675. doi:10.1111/mmi.12303.
  19. 19.PLoS ONE. 2013.8(7): e67513. doi:10.1371/journal.pone.0067513.
  20. 20.Proteomics. 2013.13(15): 2278-2282. doi:10.1002/pmic.201200072.
  21. 21.J. Biol. Chem.2013.288(22): 15537-15546. doi:10.1074/jbc.M112.430207.
  22. 22.J. Biol. Chem.2013.288(39): 28116-28125. doi:10.1074/jbc.M113.495549.
  23. 23. Journal of Biological Chemistry. 2013. 288(42): 30515-30526. doi: 10.1074/jbc.M113.489716
  24. 24.Nature.2013.496(7443): 110-113. doi:10.1038/nature12038.
  25. 25.Diabetes.2013.62(10): 3404–3417. doi:10.2337/db12-1650.
  26. 26.PLoS Genet. 2014.10(7): e1004490. doi:10.1371/journal.pgen.1004490.
  27. 27.Lipids.2014.49(2): 119-131. doi:10.1007/s11745-013-3843-x.
  28. 28.PLoS ONE.2014.9(4): e94816. doi:10.1371/journal.pone.0094816.
  29. 29.J. Biol. Chem.2015.290(13): 8469-8481 doi:10.1074/jbc.M114.622696.
  30. 30.Mol. Cell. 2015.59(5): 867-881. doi:10.1016/j.molcel.2015.05.006.
  31. 31.J. Biol. Chem. 2015.290(38): 23077-23093. doi:10.1074/jbc.M115.649806.
  32. 32.Plant Mitochondira: Methods and Protocols. 2015.1305: 107-121. doi:10.1007/978-1-4939-2639-8_7.
  33. 33.Mol. Cell. Proteomics. 2015.14: 2429-2440. doi:10.1074/mcp.O114.047555.
  34. 34.Cell Death Differ.2016.23(2): 279–290.doi:10.1038/cdd.2015.96.
  35. 35. Cancer Res. 2016.76(13):3802-3812.doi:10.1158/0008-5472.CAN-15-2498.
  36. 36.Methods Mol Biol.2016.1436:85-94. doi:10.1007/978-1-4939-3667-0_6.
  37. 37. mSystems.2016.1(3): e00005-16.doi:10.1128/mSystems.00005-16.
  38. 38. J Biol Chem. 2016.291(10):5270-5277. doi:10.1074/jbc.M115.709428.
  39. 39. PNAS. 2016.113(16):4320-4325. doi:10.1073/pnas.1519858113.
  40. 40. Sci Rep. 2016.6:19722.doi:10.1038/srep19722.
  41. 41. PLoS ONE. 2016. 11(9): 1-16. doi: 10.1371/journal.pone.0162528.
  42. 42. The Journal of Biological Chemistry. 2016. 291:5270-5277 doi: 10.1074/jbc.M115.709428.
  43. 43. Molecular & Cellular Proteomics. 2016. doi: 10.1074/mcp.O116.065219.
  44. 44. Histone Deacetylases. 2016. 1436:85-94. doi: 10.1007/978-1-4939-3667-0 6.
  45. 45. Cancer Research. 2016. 76 (13); 3802-12 doi:10.1158/0008-5472.CAN-15-2498.
  46. 46.PLOS One. 2016. 11 (12): 1-20. doi: 10.1371/journal.pone.0168467.
  47. 47.American Society for Microbiology. 2016. 1 (3): 1-19. doi: 10.1128/mSystems.00005-16.
  48. 48.Scientific Reports. 2016. 6:31086: 1-9. doi: 10.1038/srep31086.
  49. 49.Scientific Reports. 2016. 6: 36013: 1-14. doi: 10.1038/srep36013.
  50. 50.South Dakota State University. 2016. 1-131.
  51. 51.CellPress. 2016. 167 (4): 985-1000. doi: http://dx.doi.org/10.1016/j.cell.2016.10.016.
  52. 52.Cell Death and Differentiation. 2015. 23: 279-290. doi: 10.1038/cdd.2015.96.
  53. 53.Oncotarget. 2016. 1-14. doi: 10.18632/oncotarget.12015.
  54. 54.Journal of Biological Chemistry. 2016. 1-24. doi: 10.1074/jbc.M116.744532.
  55. 55.Journal of Proteomics. 2016. doi: 10.1016/j.jprot.2016.12.006.
  56. 56.Molecular Microbiology. 2016. doi:10.1111/mmi.13595.
  57. 57.App. Environ. Microbiol. 2016. 83 (21) 1183-1195 doi: 10.1128/AEM.03056-15.
  58. 58.Journal of Thoracic Disease. 2016. 8 (9) 2485-2494. doi: 10.21037/jtd.2016.08.08.
  59. 59. EMBO Report. 2016. 17 (3) 455-469. doi: 10.15252/embr.201541132
  60. 60. Mol Cell Biochem. 2017. 432 (7) 7-24.doi: 10.1007/211010-017-2993-1
  61. 61. J. Proteom. 2017. 155:63-72.doi:10.1016/jprot.2016.12.006
  62. 62. Curr. Protoc. Protein Sci. 2017. 87: 14.11.1-14.11.18.doi:10.1002/cpps.26
  63. 63. Biochimica et Biophysica Acta - Proteins and Proteomics. 2018. 1866 (3): 451-463. doi:10.1016/j.bbapap.2017.12.001
  64. 64. Nature Communications. 2018. 1039 (9). doi:10.1038/s41467-018-03422-6
  65. 65. Front. Pharmacol. 2018. 201 (9). doi: 10.3389/fphar.2018.00201
  66. 66. Biochimica et Biophysica Acta - Porteins and Proteomics. 2018. 1866 (3): 451-463. doi: 10.1016/j.bbapap.2017.12.001
  67. 67. Front. Pharmocal. 2018. 201 (9). doi: 10.3389/fphar.2018.002
  68. 68. Nature. 2018. 1039 (9). doi: 10.1038/s41467-018-03422-6
  69. 69. Journal of Molecular Medicine. 2018.096 (3-4): 281-299. doi: 10.1007/s00109-017-1616-3
  70. 70. Molecular Microbiology. 2018. doi: 10.1111/mmi.13979
  71. 71. Journal of Biological Chemistry. 2019. 294(16): 6227-6239. doi: 10.1074/jbc.RA118.006051
  72. 72. Nature Communications. 2019. 10. doi:10.1038/s41467-019-09024-0
  73. 73. Cancer Cell. 2019. 35(6): 916-931. doi: 10.1016/j.ccell.2019.05.002
  74. 74. American Journal of Physiology. 2019. 317(2). doi: 10.1152/ajpendo.00326.2018
  75. 75. Front. Cell. Infect. Microbiol. 2018. doi: 10.3389/fcimb.2017.00537
  76. 76.British Journal of Pharmacology. 2020. 176. doi: 10.1111/bph.15023
  77. 77.FEBS Letters. 2019. 594(7). doi: 10.1002/1873-3468.13702
  78. 78.EMBO. 2019. 38(18). doi:10.15252/embj.2018100948
  79. 79.Cell Reports. 2019. 29(3). doi: 10.1016/j.celrep.2019.09.023

  80. 80. Cancers, 2020, 12(1031), 1031.doi:10.3390/cancers12041031

  81. 81. Mol. Syst. Biol., 2020, 16(7), e9464.doi:10.15252/msb.20209464

  82. 82. Plant Phys. and Bioc., 2020, 152, 72-80.doi:10.1016/j.plaphy.2020.04.034

  83. 83. MBio, 2020, 11(4), e00650-20.doi:10.1128/mBio.00650-20

  84. 84. Viruses, 2020, 12(9), 976.doi:10.3390/v12090976

  85. 85. Bioc. Journal, 2020, 477(19), 3885–3896.doi:10.1042/BCJ20200413

  86. 86. Journal of Proteomics, 2021, 232. doi: 10.1016/j.prot.2020.104044

  87. 87. IUBMB Life. 2021. 73(3), 492-510. doi:10.1002/iub.2407

  88. 88. Cell Reports. 2021. 34(13). doi:10.1016/j.celrep.2021.108921

  89. 89. bioRXiv. 2021. 2021.04.21.440833. doi:10.1101/2021.04.21.440833

  90. 90. Plant Physiology and Biochemistry. 2021. 152, 72-80. doi:10.1016/j.plaphy.2020.04.034

  91. 91. PLOS Genetics. 2021. 17(7),e1009459. doi:10.1371/journal.pgen.1009459

  92. 92.Acta Pharmacologica Sinica. 2021. doi:10.1038/s41401-020-00563-7

  93. 93. The Plant Journal. 2021. doi:10.1111/tpj.15555

  94. 94. Nature Communications. 2018. 9(1):3436. doi:10.1038/s41467-018-05451-7

  95. 95. Cancer Communications. 2021. 1-19. doi:10.1002/cac2.12221

  96. 96. Journal of Biological Chemistry. 2022. 298(2):101538 doi: 10.1016/j.jbc.2021.101538

  97. 97. Structure. 2022. 80(9). 1224-1232 https://doi.org/10.1016/j.str.2022.05.020

新闻动态
行业前沿
技术文章
最新产品