Deprecated: Creation of dynamic property cls_session::$session_data_table is deprecated in /www/sites/www.188bio.com/index/systems/cls_session.php on line 49
Cell Technology/ApoLogix SR-FMK/25/SR100188bio精品生物—专注于实验室精品爆款的电商平台 - 蚂蚁淘旗下精选188款生物医学科研用品
您好,欢迎您进入188进口试剂采购网网站! 服务热线:4000-520-616
蚂蚁淘商城 | 现货促销 | 科研狗 | 生物在线
产品资料

Cell Technology/ApoLogix SR-FMK/25/SR100

  • Description
  • Additional Information
  • Readable Documents
  • Assay Principle
  • Reviews

Key Benefits

  • Non-cytotoxic assay arrests further apoptotic activity via caspase inhibition.
  • Cell permeablity permits direct visualization of cytosolic apoptotic events.
  • Apoptotic cell population does not diminish over time.
  • Add reagent directly to cells. No special buffer or media needed. No preparation of cell lysates required. Simple wash procedure.
  • Works in diverse cell lines: human, rodent, Drosophila.
  • Can be performed in conjunction with Annexin staining, TUNEL, antibody staining, or with other APO LOGIX reagents on the same population of cells.
  • Permits high through-put screening. Protocol can be adapted for ex vivo as well as in situ experiments.
  • Applications – Works with fluorescence microscope, 96-well fluorescence plate readers
  • Yields both quantitative and qualitative results. Gives strong signal with little background noise.

Additional information

Kit Size

25, 100

APO LOGIX SR kits contain a generic sulforhodamine labeled caspase inhibitor (sulforhodamine-peptide-fluoromethyl ketone). This reagent is cell permeable and is used on whole cells to detect apoptosis. Apoptotic cells are detected by a fluorescence plate reader or fluorescence microscope using an excitation source at 550nm and measuring emission at 595nm. The assay takes about 1 hr to completeAPO LOGIX Sulforhodamine

Jurkat cells stimulated with staurosporine for 2 hours and then labeled with SR-VAD-FMK.

Left side: 30X phase contrast

Right side: 30X fluorescence microscope. Excitation: 550nm emission > 580nm.APO LOGIX Sulforhodamine

Jurkat cells stimulated with staurosporine for 2 hours. Cells were then stained with SR-VAD-FMK for 1 hour and read in a 96 well fluorescence plate reader.

Document Title
SR protocol
SRVADFMK Datasheet
msds.Apologix
Reference
Slee, E. A., C. Adrain, and S. J. Martin. 1999. Serial Killers: ordering caspase activation events in apoptosis. Cell Death and Differ. 6:1067-1074.
Walker, N. P., R. V. Talanian, K. D. Brady, L. C. Dang, N. J. Bump, C. R. Ferenz, S. Franklin, T. Ghayur, M. C. Hackett and L. D. Hammill. 1994. Crystal Structure of the Cysteine Protease Interleukin-1ß-Converting Enzyme: A (p20/p10)2 Homodimer. Cell 78:343-352.
Wilson, K. P., J. F. Black, J. A. Thomson, E. E. Kim, J. P. Griffith, M. A. Navia, M. A. Murcko, S. P. Chambers, R. A. Aldape, S. A. Raybuck, and D. J. Livingston. 1994. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370: 270-275.
Rotonda, J., D. W. Nicholson, K. M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E. P. Peterson, D. M. Rasper, R. Ruel, J. P. Vaillancourt, N. A. Thornberry and J. W. Becker. 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3(7): 619-625.
Kumar, S. 1999. Mechanisms mediating caspase activation in cell death. Cell Death and Differ. 6: 1060-1066.
Thornberry, N. A., T. A. Rano, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, V. M. Houtszager, P. A. Nordstrom, S. Roy, J. P. Vaillancourt, K. T. Chapman and D. W. Nicholson. 1997. A combinatorial approach defines specificities of members of the caspase SRily and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272(29): 17907-17911.
Amstad, P.A., G.L. Johnson, B.W. Lee and S. Dhawan. 2000. An in situ marker for the detection of activated caspases. Biotechnology Laboratory 18: 52-56.
Bedner, E., P. Smolewski, P.A. Amstad and Z. Darzynkiewicz. 2000. Activation of caspases measured in situ by binding or fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Research 259: 308-313.
Smolewski, P., E. Bedner, L. Du, T.-C. Hsieh, J. Wu, J. D. Phelps and Z. Darzynkiewicz. 2001. Detection of caspase activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44: 73-82.
Ekert, P. G., J. Silke and D. L. Vaux. 1999. Caspase inhibitors. Cell Death and Differ. 6:1081-1086.
Carcia-Calvo, M., E. Peterson, B. Leiting, R. Ruel, D. Nicholson and N. Thornberry. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273: 32608-32613.
Hirata, H., A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto and M. Sasada. 1998. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. 187: 587-600
Part#ReagentTemperature
Part # 679Lyophilized SR-VAD-FMK2-8C
Part # 63510X Wash Buffer2-8C
Part # 63610X Fixitive2-8C

Please select an ACF field to output

新闻动态
行业前沿
技术文章
最新产品